
 1

WHITE BOX TESTING OF WEB APPLICATIONS

NASHAT MANSOUR and MANAL HOURI
Computer Science and Mathematics Division, Lebanese American University, Mme Curie St., Beirut,

Lebanon. E-mails: nmansour@lau.edu.lb, mhouri@idm.net.lb

ABSTRACT: We present new techniques for white
box testing of web applications that focus on their
distinctive features. We enhance previous dependence
graphs for modeling of web applications and propose an
event-based dependence graph model. We apply data
flow testing techniques to these dependence graphs and
introduce an event flow testing technique. Also, we
present a few coverage testing approaches for web
applications.

KEY WORDS: coverage testing, event flow testing,
dependence graphs, web applications.

1. INTRODUCTION

 The basic structure of web applications consists of
three tiers: the client, the server and the data store. Web
applications started simple and static and consisted
mostly of HTML pages. Then, the integration of both
HTML and other scripting languages yielded not only
sophisticated web applications but also new issues that
had to be addressed. The recent Microsoft’s .NET
platform lowered the barriers to web development [1].
In this paper, we focus on .NET web applications.
ASP.NET supports event-driven programming. That is,
objects on a web page can expose events that can be
processed by Active Server Pages (ASP) code.
Traditional web applications contain a mix of
HyperText Markup Language (HTML) and scripts,
making the code difficult to read, debug, and maintain.
ASP.NET eliminates this problem by promoting the
separation of code and content using the code-behind
feature. The user interface and the user interface
programming logic need not necessarily be written in a
single page.

 Testing is the process of revealing errors that is used
to give confidence that the implementation of a
program meets its specifications. Testing Techniques
are usually classified as black-box and white-box.
Black-box methods are specification based such as
equivalence partitioning, boundary value analysis,
random testing and functional analysis-based testing
[2]. White-box testing methods are code based such as
statement testing, branch testing, path testing, predicate
testing, dataflow testing, mutation testing and domain
testing [2-4]. Testing and maintaining web-based

applications is both challenging and critical. It is
challenging because traditional testing methods and
tools are not sufficient for web-based applications,
since they do not address their distinctive features.
Examples of the new features of web applications are:
extensive use of events, rich Graphical User Interface
(GUI), and presence of server side scripting. Testing
web-based applications is critical because failure may
be very costly.

 Research on web-based applications testing has
been fairly limited. Some work has been recently
proposed. Ricca and Tonnella [5] suggest a UML
model of web applications and propose that all paths
which satisfy a selected criterion are properly exercised.
Ricca and Tonnella [6,7] investigate web application
slicing and data flow testing of web applications. Di
Lucca [8] employs an object-oriented model of a web
application and proposes to test single units of a web
application as well as integration testing. Wu and Offutt
[9] define a generic analysis model that characterizes
the typical behaviors of web-based applications
independently of different technologies. Elbaum, Karre,
and Rothermel [10] explore the notion that user session
data gathered as users operate web applications can be
successfully employed in the testing of those
applications. In [11], data flow information of the web
application using flow graphs is captured. Test cases
devised for these flow graphs are based on the intra-
object, inter-object, and inter-client perspectives.

 In this paper, we present new techniques for testing
web applications developed in the .NET environment.
First, we extend previous work on modeling web
applications by enhancing previous dependence graphs
and proposing an event-based dependence graph model.
Second, we apply data flow testing methods to the
dependence graphs and propose an event flow testing
technique. Also, we present a few coverage testing
approaches.

 This paper is organized as follows. Section 2 gives
dependence graph models. Sections 3 and 4 present
data flow testing, event flow testing, and coverage-
based testing. Section 5 concludes the paper.

 2

2. DEPENDENCE GRAPH MODELING
FOR WEB APPLICATIONS

 In this section, we present dependence graph models
of .NET web applications. We extend previous control,
data, and call dependence graphs with semantic
dependences; we present a more elaborate call
dependence graph and add an event dependence graph.

 To illustrate our dependence graph modeling
approach, we use a web application, “To Do List”, for a
simple personal agenda shown in Figure 1. This
application contains only the essential elements of an
agenda and was taken from [12]. It consists of two
presentation ASP front ends (todolist.aspx, and
edititem.aspx) and two C# code-behind classes
(todolist.aspx.cs and edititem.aspx.cs) that are listed in
the appendix. As depicted in Figure 1, the user views
his/her unfinished tasks by priority order. Once finished
with a task, the user can close it by clicking “Done”.
This removes the task from the open items and places it
in the closed items. A user can also do several things
such as “Edit a task”, “Delete a task”, “Add item to
agenda”, “Review item”, etc.

 Some work has been reported on slicing web
applications in [6,7] based on a number of dependences.
These dependences are: control, data, and call
dependences, which are summarized below.

Definition: a control dependence holds between two
statements if one defines a scope which directly
includes the other. In the dependence graph, it is
represented by a directed edge pointing to the
dependent statement.
Definition: a data dependence holds between two
statements if one defines the value of a variable which
is used by the other, and a definition clear path exists
between the two. In the dependence graph, it is
represented by a curved directed edge.

Definition: (1) a call dependence holds between each
statement of type call and the server/client program or
procedure invoked. (2) A parameter-in dependence
holds between any actual parameter of a call and the
respective formal parameter of the invoked program or
procedure. Both call dependences are represented by a
dashed directed edge in the dependence graph.

 In the rest of this section, we present dependences of
.NET web applications. Some of these dependences are
directly applied from previous work. Others were
customized to cover the unique features of ASP.NET.
We start by presenting a study of all the dependences
that are to be taken into consideration when slicing an
ASP.NET application. Then, for every dependence, we
construct its corresponding dependence graph; in this
context, we introduce the Event-based Dependence
Graph (EDG).

2.1. Call Dependences

 In this subsection, we extend previous definitions
and graph representations of call dependences.
Specifically, we differentiate between three types of
call dependence: internal, inheritance, and cascading;
the description is intended to fit the .NET features.

2.1.1 Inheritance Call Dependence

 Every ASP.NET web application has at least one
presentation file. Therefore, it has at least one
inheritance call dependence to the code behind class
provided by the “inherits” keyword. Inheritance call
dependences occur only at the root node level of any
graph.
Definition: An inheritance call dependence holds
between a code behind class .aspx.cs and a
presentation .aspx file if the keyword “inherits” of the
.aspx file explicitly declares this inheritance. In the
dependence graph, it is represented by a dashed edge.

Figure 1: “To Do List”: A Simple Personal Agenda.

 3

2.1.2 Internal Call Dependence

 Besides the existing call dependence due to
inheritance, internal call dependence may be present in
ASP.NET code behind classes.
Definition: An internal call dependence holds between
a calling statement in a code behind class and a
method, if both the calling statement and the method
are internal to the class. It is also represented by a
dashed edge in the dependence graph.

2.1.3 Cascading Call Dependence

 Besides the two previously presented types of call
dependences, the unique feature of code-behind in
.NET enforces another kind of dependence: “cascading
call dependence”. In fact, many of the main elements of
a web page (i.e. data) are first defined on the
presentation file (integer or string variables, datagrid,
dropdown, text box, etc). Then, in the code behind
class, they are used. Or these elements contribute to the
definition of other data where the latter is used in the
code.
Definition: A cascading call dependence holds either
(i) between a data definition in the presentation file and
its use in the code behind or (ii) between a data
definition in the presentation file and its use in the
definition of another data in the code behind class. It is
represented by a dashed curved edge in the dependence
graph.

 Figure 2 illustrates control and data dependences,
inheritance call, internal call, and cascading call
dependences. As shown in Figure 2 for edititem.aspx,
we have the definition of the variable “title” at line 118.
Then in edititem.aspx.cs, title is used in the assignment
statement of line 152. Therefore, we represent this
cascading call dependence from one presentation file to
a code behind class with a curved dashed line.

2.2 Semantic Dependences

 Semantic dependences are important in .NET
applications and are lacking in previous work. To
model this type of dependences, we propose the
addition of new notational elements to the SDG. Since
ASP.NET may use both intermingled code and the code
behind feature, numbering the statements and using
their numbers as done in previous work does not make
the representation very clear. Therefore, we introduce
four new elements to the SDG: page, text, image, event
and we keep the ellipse for statements of processing
nature as suggested in [6]. Processing statements cover
computation statements, definitions and uses of
variables. It is worth mentioning that our SDG will not
include all statements. Rather, it will skip the
representation of statements that bring no additional
information to the interactions between the different
elements of the web application.

Figure 2: Control dependences (directed edges), data dependences (curved directed edges), inheritance call

dependence, internal call dependences (dashed edges) and cascading call dependence (curved edge from
one subgraph node to another) for a part of Edititem.aspx.cs and Edititem.aspx.

 4

 The sequential order of statements is almost
meaningless for .NET web applications, since calls to
code behind libraries and classes are made simple.
Therefore, we suggest instead another representation
style: that of defining a page and the elements holding
the semantic dependences that it may contain. We use
the following notation: square to represent a web page;
parallelogram for a textual element (text included on a
page); and a triangle for graphical element (button, text
box, drop down, etc).

 .NET web applications usually include a significant
number of events. Therefore, it is essential to introduce
a representation for events. In fact, they are the basis of
the event-based dependences and the essential elements
of the Event-based Dependence Graph (EDG). The
representation notation of events that we propose is
borrowed from the concept of Petri nets. The dynamics
of a Petri net consists of a sequence of transition firing.
Upon a transition firing, two things happen: (i) tokens
are taken away from positions (which have arrows
going from these positions) to the transition considered,
and (ii) new tokens are placed on positions indicated by
arrows that originate from the transition. In our model,
places are web pages, transitions are events and tokens
represent the interaction of the user with the event
(usually this interaction occurs through the pressing of a
button or a link). Places will not be represented as
circles. Instead, they will be represented by any of the
elements shown in Figure 3. As for tokens, we will use
the solid dot to represent the “positive interaction” of
the user with the event to be fired (i.e., the user did
press the button), and a white dot to represent the
“negative interaction” of the user with the event to be
fired (i.e., the user didn’t press the button). Figure 3
shows the two kinds of tokens.
Definition: a semantic dependence holds between an
informative object (graphical, textual, and processing)
and a page or another informative object if the former
provides information on the latter.

2.3 Event-Based Dependences

 In previous work, events are implicitly addressed
through call dependences. We find it essential to add
other types of dependences to satisfy a major feature of
ASP.NET: events. These dependences are link, visible
effect, and invisible effect dependences, which allow
the construction of an Event-Based Dependence Graph
(EDG). The three types of dependences are defined as
follows:

(a) Link Dependence: upon clicking a button, the user
may be taken to another page. This transfer is
assured via the firing of an event that will fetch the

requested page. A solid square arrow will point to
the fetched page by the event. The part of Figure 3
that includes the elements 79, 17 and 114 illustrate
this dependence.
Definition: a link dependence holds between two
pages if the first requests the second through an
event (most commonly through pressing a button or
a hyperlink).

The home page of “To Do List” is “all open items”
(represented by a square in Figure 3) from where
we can go to another page by simply clicking the
textual hyperlink “add a new item” (represented by
the parallelogram in Figure 3). The “positive
interaction” of the user (that of clicking the
hyperlink) is indicated by the solid dot. Once the
user has clicked, the event fires and the “new to do
item” page is fetched.

(b) Visible Effect Dependence: sometimes when the
user clicks a link or button (ex: add new item), this
event directly takes him to a page where the effect
of the event triggered is visible. This dependence is
represented by a square dashed arrow pointing to
the affected page by the event. The part of Figure 3
that includes the elements 114, 79 and 139
illustrate this dependence.
Definition: a visible effect dependence holds
between two pages if the first modifies the second
through an event that will (1) implement the
modification and (2) show the effect on the desired
page by taking the user directly to it.

In our application, once the user adds a new item
on his agenda and presses “save changes” button,
he is taken to the “all open items” page where the
effect of his action is visible on the page: the added
item is now on his tasks’ list.

(c) Invisible Effect Dependence: sometimes when the
user clicks a link or button (e.g.: delete an item),
this event implements the requested action
(removing the indicated record) without taking the
user to the page where the effect takes place. The
user has to go “manually” to the other page to see
the effect taking place as supposed to. This
dependence is represented by a square dotted arrow
pointing to the affected page by the event. The part
of Figure 3 that includes the elements 79, 82 and
63 illustrate this dependence.
Definition: an invisible effect dependence holds
between two pages if the first modifies the second
through an event that will (1) implement the
modification and (2) will not show the effect on the
desired page by taking the user directly to it. The

 5

user has to go “manually” to the desired page to
see the effect.

When the user of the application is done with one
of the tasks of his agenda, he can close it by
clicking on “done”. When “done” is fired, the
“open items” page is automatically updated, and
the user can directly visualize the elimination of
this task (this is the visible effect dependence). At
the same time, the closed item rejoins the “closed
items” page. The user isn’t taken directly to this
page upon pressing “done”. This effect of the event
is invisible to the user until he visits the “closed
items” page intentionally (this is the invisible effect
dependence).

 The EDG for “To Do List” is shown in Figure 3,
where irrelevant elements were removed for clarity. We
note the presence of the graphical element: “row n” and
the processing statement: “record p”. “row n” refers to a
typical row in the datagrid. Typically, it consists of a
colored priority arrow, a colored background, some
text, along with hyperlinks like “done”, “edit” and
“delete”. As for “record p”, it implies a typical record
on the datagrid that can be either “reopened”, or
“deleted”. We also note the presence of processing

statements (ellipses) on the visible and invisible effect
dependence lines in Figure 3. These ellipses inform
about the action performed through each of these
dependences. Example: “add record n” means a new
record p is created on the datagrid of “all open items”
page.

3. DATA FLOW TESTING AND EVENT
FLOW TESTING FOR WEB
APPLICATIONS

3.1 Data Flow Testing of .NET Applications

 We use the previous experience of [11] in data flow
testing of web applications and adapt it to suit .NET
web applications based on the dependence graphs
described in Section 2. For .NET web applications,
three data flow testing levels from the previous work
can be applied: function level, function cluster level and
object level. In function level data flow testing, we use
data dependence graphs. However, in function cluster
and object level testing, we use call dependence graphs.
For brevity, we include only one example of object
level data flow testing of “To Do List” code.

Figure 3: Event-Dependence Graph for “To Do List”

 6

 The “object” in .NET web applications corresponds
to both elements of every page: the code-behind class
and the presentation front. Therefore, to perform object
level testing, we need to consult data the cascading call
dependence graph. The code-behind class
“edititem.aspx.cs” and its presentation front
“edititem.aspx” serve as example for object level
testing. Figure 4 illustrates this dependence between
statement 118 and 152, and Table 1 identifies the
variable of this object and its associated def-use chains.
In this example, we have only one variable to be tested
on this level. “_title” is defined in the presentation front
and used in the code-behind class. Therefore, there
exists a chain from the definition statement to the use
statement of this variable on the object level.

3.2 Event Flow Testing of .NET Web
Applications

 We propose in this section event flow testing that
focuses on events and their ripple effect. We identify
two types of testing “levels” pertaining to the events:
fetching and updating. With these two testing levels, a
new type of chains is also introduced: the trigger-effect
chain.

3.2.1 Fetch Level Testing

 In the event flow testing, we aim to test events in an
.NET web application by implementing a similar
pattern to def-use pairs. For event flow testing, we
introduce the trigger-effect chain that is a triplet of the
following form:

<Page m, Page p, (Event i, Event ii, …, Event n)>,
where Page m is where triggering of event takes place,
Page p is where effect of event takes place, and (Event
i, Event ii, …, Event n) are all the n events that can be
triggered at the same time on page m and cause an
effect on page p.

 In Section 2, we described three event-based
dependences. The first dependence introduced was the
link dependence. This dependence concerns only fetch
type events, i.e., events causing the user to move from
one page to another without updating any of the pages
involved. Event flow testing on the fetching level takes
care of representing the Link dependence. Figure 3
illustrates the EDG for the ASP.NET web application
“To Do List. In Table 2, we show the trigger-effect
chains at the fetch level for this example.

Figure 4: “Edititem.aspx.cs” and “edititem.aspx” code fragment with associated cascading call
dependence graph.

Table 1: Variable of object “edititem” and its def-use chain on the object level.

Object Variable Test Level Def-Use Chains

Edititem _title Object <118, 152>

 7

Table 2: Events of EDG “To Do List” and its corresponding trigger-effect chains at the fetch level.

EDG Event(s) Test Level Trigger-Effect Chains

To Do List Add New Item Fetch <79, 114, 17>

 Show all closed items Fetch <79, 63, 19>

 Edit Fetch <79, 114, 86>

 Not Filling Description text

box, save changes

Fetch <114, 145, (134, 139)>

Table 3: Events of EDG “To Do List” and its corresponding trigger-v-effect chains at the update level.

EDG Event(s) Test Level Trigger-v-Effect Chains

To Do List Add new record to datagrid Update <114, 79, (139, 134)>

 Delete record from closed

items

Update <63, 63, 70>

 Remove item permanently

from database

Update <63, 63, 74>

 Delete record from open

items

Update <79, 79, 82>

 Remove item permanently

from database

Update <79, 79, 84>

Table 4: Events of EDG “To Do List” and its corresponding trigger-i-effect chains on the update level.

EDG Event(s) Test Level Trigger-i-Effect Chains

To Do List Add record to open items Update <63, 79, 70>

 Add record to closed items Update <79, 63, 82>

 On the EDG of “To Do List”, upon clicking “Add
new item” (17) on the “all open items” page (79), an
event is fired and the “add new item” page (114) is
fetched. Also, upon clicking “save changes” without
filling the “description text box” on the “edit item”
page (114), two events (134 and 139) are fired where
the text “Text Field can’t be 0 length” (145) is shown
on the same page.

3.2.2 Update Level Testing

 Data flow testing at the update level is based on the
visible-effect and invisible-effect dependences. This is
why it is necessary to differentiate two types of trigger-
effect chains: trigger-v-effect (trigger-visible effect)
and trigger-i-effect (trigger-invisible effect). Trigger-v-
effect chain takes care of finding test cases for the
visible effect dependence. Trigger-i-effect chain takes

care of finding test cases for the invisible effect
dependence. In Tables 3 and 4, we show the update
level trigger-effect chains for “To Do List”. We observe
from Tables 3 and 4 a complementary effect of events.
For example, the event “delete record from closed
items” (visible effect dependence) is the complement of
the event “add record to open items”.

4. COVERAGE-BASED TESTING

 Coverage testing techniques concern the process of
finding areas of a program not exercised by a set of test
cases, creating additional test cases to increase
coverage, and determining a quantitative measure of
code coverage, which is an indirect measure of quality.
However, constructing a thorough set of tests that yield
high coverage is often a very tedious, time-consuming
task. The classical approach for code coverage includes

 8

coverage of statements, branches, paths, etc…. In this
section, we present a new approach to coverage-based
testing that targets web applications. In addition to the
previous coverage testing types, we propose to add
hyperlink coverage, input-GUI coverage and event
coverage in order to test for web applications’
additional features. In practice, a test criterion sets a
collection of requirements to be fulfilled. These
requirements are mapped to a set of entities of the web
application’s event dependence graph (EDG) that must
be covered when tests are executed.

4.1 All-Hyperlinks Testing

 To achieve hyperlinks coverage, test cases should
exercise all hyperlinks, i.e. all elements pertaining to
the solid square arrows on the EDG of the application.
For example, in the EDG of “To Do List” shown in
Figure 3, we can spot three solid square arrows.
Providing test cases that exercise all these arrows will
assure all-hyperlinks coverage. One all-hyperlinks
coverage test case for “To Do List” is the sequence that
travels from the “all Open Items” page through “Add
New Item” button, to the “Add New Item” page.

4.2 All-Input-GUI Testing

 To achieve input-GUI coverage, test cases should
exercise all input-graphical elements, whether click
buttons, or input text boxes, or drop down menus just to
name a few, i.e. all elements having tokens on the EDG
of the application. When consulting Figure 3, we can
construct many test cases that assure all-Input-GUI
coverage.

4.3 All-events Testing

 To achieve events coverage, test cases should
exercise all elements pertaining to the trigger and effect
of every event of the application under test, i.e. all
elements pertaining to the dashed and dotted square
arrows on the EDG of the application. For example,
with the assistance of the EDG of “To Do List”, we can
spot seven events.

 An example of event coverage in “To Do List” could
be the following: a test case must be constructed that
covers the event “Add a new record to the datagrid”
from the triggering point to the effect point. A sequence
that covers this event can be derived from the dashed
square arrow on the EDG on Figure 3. One all-events
coverage test case for “To Do List” is the sequence that
travels from the “all Open Items” page through “Add
New Item” button, fill in the “description text box”,
click “save changes back to the “All Open Items” page.

The other six test cases follow the same pattern as
depicted in Figure 3.

5. CONCLUSION

 We have presented data flow, event flow, and
coverage-based testing techniques that address the
features of .NET web applications and which are based
on the construction of dependence graphs. These
proposed techniques are useful to provide confidence
about the quality of the rapidly proliferating web
applications.

REFERENCES
[1] Microsoft. (2002) Introduction to Microsoft

ASP.NET. Microsoft Official Curriculum, 2002.
[2] B. Beizer, Software Testing Techniques, New York,

Van Nostrand Reinhold, 1990.
[3] N. Mansour and M. Salame, Data generation for

path testing, Software Quality Journal, 12, 2004,
pp. 121-136.

[4] S. Rapps and E. Weyuker, Selecting software test
data using data flow information, IEEE Trans. on
Software Eng., April, 1985, pp. 367-375.

[5] F. Ricca and P. Tonnella, Analysis and testing of
web applications, In the Proceedings of the
International Conference on Software Engineering,
Toronto, 1994, pp. 25-34.

[6] F. Ricca and P. Tonnella, Web application slicing.
In the Proceedings of the International Conference
on Software Maintenance, Italy, 2001, pp. 148-157.

[7] F. Ricca and P. Tonnella, Construction of the
system dependence graph for web application
slicing, In the Proceedings of SCAM’2002
Workshop on Source Code Analysis and
Manipulation, Montreal, 2002, pp. 123-132.

[8] G. Di Lucca, et al., Testing web applications,
International Conference on Software
Maintenance, Italy, 2002, pp. 310-319.

[9] Y. Wu and J. Offutt, Modeling and testing web-
based applications, GMU ISE, ISE-TR-02-08,
2002.

[10] S. Elbaum, S. Karre and G. Rothermel, Improving
web application testing with user session data, In
the 25th International Conference on Software
Engineering, Portland, 2003, pp 49-53.

[11] C.H. Liu, et al., Object-based data flow testing of
web applications, International Journal of
Software Engineering and Knowledge Engineering,
11(2), 2001, pp. 157-179.

[12] J. Lyon-Smith, ASP.NET to Do List Application.
2002, www.codeproject.com.

 9

Appendix. “To Do List” web application

Todolist .aspx:
1 <%@ Page language="c#" Codebehind="ToDoList.aspx.cs" AutoEventWireup="false"
Inherits="ToDo.ToDoListForm" %>
2 <HTML>
3 <HEAD>
4 <title>
5 <%=_title%>
6 </title>
7 <style type="text/css">
8 H1 {FONT-SIZE: 12pt; LINE-HEIGHT: 2pt; FONT-FAMILY: Verdana}
9 BODY {FONT-SIZE: 8pt; FONT-FAMILY: Verdana}
10 A {COLOR: navy}
11 A:visited {COLOR: navy}
12 </style>
13 </HEAD>
14 <body>
15 <h1><%=_title%></h1>
16 <form id="ToDoListForm" method="post" runat="server">
17 Add New Item
18 Show All Items
19 Show All Closed Items
20 Show All Open Items
21 <P>
22 <asp:datagrid id="ToDoDataGrid" runat="server"
 OnItemCommand="ToDoDataGrid_Command" Width="100%"
 GridLines="Vertical" Font-Size="8pt" CellSpacing="0" CellPadding="2"
 BorderColor="lightgray" BorderWidth="1" AutoGenerateColumns="false">
23 <Columns>
24 <asp:BoundColumn Visible="false" DataField="ID"/>
25 <asp:TemplateColumn ItemStyle-Width="12">
26 <ItemTemplate><img src='<%# _priorityUrls[(int)DataBinder.Eval(Container.DataItem, "Priority") -

1] %>'/></ItemTemplate>
27 </asp:TemplateColumn>
28 <asp:BoundColumn HeaderText="Description" DataField="Description" />
29 </Columns>
30 <HeaderStyle BackColor="teal" ForeColor="white" Font-Bold="true" />
31 <ItemStyle BackColor="white" ForeColor="darkblue" />
32 <AlternatingItemStyle BackColor="beige" ForeColor="darkblue" />
 </asp:datagrid>
Todolist.aspx.cs:
33 public class ToDoListForm : System.Web.UI.Page
 {
34 protected System.Web.UI.WebControls.DataGrid ToDoDataGrid;
35 protected string _title;
36 protected string[] _priorityUrls = { "down.png", "nothing.png", "up.png" };
37 private void Page_Load(object sender, System.EventArgs e)
 {
38 int query = 2;
39 if (IsPostBack)
 {
40 query = (int)ViewState["query"]; }
41 else
 {
42 string queryStr = Request.Params["query"];
43 if (queryStr != null)
44 query = Int32.Parse(queryStr);
45 ViewState["query"] = query; }
46 string connStr = ConfigurationSettings.AppSettings["ConnectionString"];
47 string sql;
48 string qryTitle;
49 ButtonColumn bcDone;
50 ButtonColumn bcEdit;
51 ButtonColumn bcDelete;
52 ButtonColumn bcReopen;
53 BoundColumn bcOpened;
54 BoundColumn bcClosed;
55 switch (query)
 {
56 case 0:
57 qryTitle = "All Items";
58 sql = "select * from items order by priority desc";
59 bcOpened = new BoundColumn();
60 bcOpened.HeaderText = "Opened";
61 bcOpened.DataField = "Opened";
62 ToDoDataGrid.Columns.Add(bcOpened);
 break;
63 case 1:
64 qryTitle = "All Closed Items";
65 sql = "SELECT * FROM Items WHERE Closed Is Not Null order by priority desc";
66 bcClosed = new BoundColumn();
67 bcClosed.HeaderText = "Closed";
68 bcClosed.DataField = "Closed";
69 ToDoDataGrid.Columns.Add(bcClosed);
70 bcReopen = new ButtonColumn();
71 bcReopen.Text = "Reopen";
72 bcReopen.CommandName = "ReopenToDo";
73 ToDoDataGrid.Columns.Add(bcReopen);
74 bcDelete = new ButtonColumn();
75 bcDelete.Text = "Delete";
76 bcDelete.CommandName = "DeleteToDo";
77 ToDoDataGrid.Columns.Add(bcDelete);
 break;
78 default:
79 case 2:
80 qryTitle = "All Open Items";
81 sql = "SELECT * FROM Items WHERE Closed Is Null order by priority desc";
82 bcDone = new ButtonColumn();
83 bcDone.Text = "Done";
84 bcDone.CommandName = "DoneToDo";
85 ToDoDataGrid.Columns.Add(bcDone);
86 bcEdit = new ButtonColumn();
87 bcEdit.Text = "Edit";
88 bcEdit.CommandName = "EditToDo";
89 ToDoDataGrid.Columns.Add(bcEdit);
90 bcDelete = new ButtonColumn();
91 bcDelete.Text = "Delete";
92 bcDelete.CommandName = "DeleteToDo";

93 ToDoDataGrid.Columns.Add(bcDelete);
 break; }
94 _title = "To Do List - " + qryTitle;
95 OleDbDataAdapter adapter = new OleDbDataAdapter(sql, connStr);
96 DataSet ds = new DataSet();
97 adapter.Fill(ds);
98 ToDoDataGrid.DataSource = ds;
99 ToDoDataGrid.DataBind(); }
100 public void ToDoDataGrid_Command(Object sender, DataGridCommandEventArgs e)
 {
101 TableCell idCell = e.Item.Cells[0];
102 string idStr = idCell.Text;
103 string cmdStr = ((LinkButton)e.CommandSource).CommandName;
104 if (cmdStr == "EditToDo") {
105 Response.Redirect("EditItem.aspx?id=" + idStr); }
106 string connStr = ConfigurationSettings.AppSettings["ConnectionString"];
107 string sql;
108 switch (cmdStr)
 {
 case "DeleteToDo":
109 sql = "DELETE FROM Items WHERE ID=" + idStr;
 break;

 case "ReopenToDo":
111 sql = "UPDATE Items SET Closed = Null WHERE ID=" + idStr;
 break;
 default:
113 sql = "UPDATE Items SET Closed = NOW() WHERE ID=" + idStr;
 break;
Edititem.aspx:
114<%@ Page language="c#" Codebehind="EditItem.aspx.cs" AutoEventWireup="false"
Inherits="ToDo.EditItemForm" %>
115<HTML>
116 <HEAD>
117 <title>
118 <%=_title%>
119 </title>
120 <style type="text/css">
121 H1 { FONT-SIZE: 12pt; LINE-HEIGHT: 2pt; FONT-FAMILY: Verdana }
122 BODY { FONT-SIZE: 8pt; FONT-FAMILY: Verdana }
123 A { COLOR: blue }
124 A:visited { COLOR: blue }
125 </style>
126 </HEAD>
127 <body>
128 <script for="window" event="onload">
129 window.document.forms["EditItemForm"].children["DescriptionTextBox"].focus();
130 </script>
131 <h1><%=_title%></h1>
132 <form id="EditItemForm" method="post" runat="server">
133 Description:

134 <asp:textbox id="DescriptionTextBox" runat="server" Font-Name="Verdana" Font-Size="8pt"

Width="100%"></asp:textbox>
135

136 Priority:

137 <asp:dropdownlist id="PriorityList" Font-Name="Verdana" Font-Size="8pt"

Runat="server"></asp:dropdownlist>

138 <asp:label id="ErrorLabel" runat="server" Text="" Visible="False"

ForeColor="Red"></asp:label>

139 <asp:linkbutton id="SaveButton" onclick="SaveButton_Click" Text="Save Changes"

Runat="server"></asp:linkbutton></form>
140 </body>
141</HTML>
Edititem.aspx.cs:
142 public class EditItemForm : System.Web.UI.Page
 {
143 protected System.Web.UI.WebControls.LinkButton SaveButton;
144 protected System.Web.UI.WebControls.TextBox DescriptionTextBox;
145 protected System.Web.UI.WebControls.Label ErrorLabel;
146 protected System.Web.UI.WebControls.DropDownList PriorityList;
147 protected string _title;
148 protected System.Web.UI.WebControls.LinkButton Save;
149 protected static string[] _priorities = {"Low", "Medium", "High"};
150 private void Page_Load(object sender, System.EventArgs e)
 {
151 string idStr = Request.Params["id"];
152 _title = (idStr == null ? "New" : "Edit") + " To Do List Item";
153 if (!IsPostBack)
 {
154 foreach (string s in _priorities)
155 PriorityList.Items.Add(s);
156 if (idStr != null)
 {
157 string connStr = ConfigurationSettings.AppSettings["ConnectionString"];
158 string queryStr = "select * from Items where id=" + idStr;
159 OleDbDataAdapter adapter = new OleDbDataAdapter(queryStr, connStr);
160 DataSet ds = new DataSet();
161 adapter.Fill(ds);
162 DataTable tbl = ds.Tables[0];
163 if (tbl.Rows.Count > 0)
 {
164 DataRow row = tbl.Rows[0];
165 DescriptionTextBox.Text = row["Description"].ToString();
166 PriorityList.SelectedIndex = (int)row["Priority"] - 1;
 } } }
167 else {
168 OnSubmit(); } }
169 public void SaveButton_Click(object sender, System.EventArgs e) {
170 OnSubmit(); }
171 protected void OnSubmit() {
172 string connStr = ConfigurationSettings.AppSettings["ConnectionString"];
173 string sql;
174 string idStr = Request.Params["id"];
175 string desc = DescriptionTextBox.Text.Replace("'", "''");
176 int priority = PriorityList.SelectedIndex + 1;
177 if (idStr == null)
178 sql = "INSERT INTO Items (Description, Priority) VALUES ('" + desc + "', " + priority + ")";
179 else
180 sql = "UPDATE Items SET Description = '" + desc + "', Priority=" + priority + " WHERE ID=" +
 idStr

